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Abstract. We use a ‘sum-over-paths’ method to derive an explicit expression for the Green’s
function of the diffusion equation on an arbitrary tree, making connection with the conventional
Laplace approach but emphasizing the real-time nature of the technique. This provides a general
framework for studying both discrete-space and continuous-space diffusion processes on complex
one-dimensional topologies.

1. Introduction

The diffusion equation is widely encountered in the physical and biological sciences. A
problem of general interest is how to solve this equation on complex topologies, a classical
example of which is the one-dimensional process on a branching structure or tree. Many
physical systems can be reduced to this problem after suitable approximations. For example,
in neurobiology, the diffusion equation with damping (cable equation) has been used to
model the passive membrane properties of a neuron’s dendritic tree (Rall 1977, Tuckwell
1988). Other examples include the flow of gas through porous media (Dullien 1979),
sedimentation processes (Broadbridge and Rogers 1990) and electromigration along the
grain boundaries of aluminium tracks on integrated circuits (Shatzes and Lloyd 1986, Dwyer
et al 1994). Further, as an abstract mathematical problem it is of great importance in its
own right, insofar as one is always interested in developing new techniques for solving this
and indeed otherPDEs on complex structures.

The standard approach to finding the fundamental solution or Green’s function of the
diffusion equation on a tree would be to take Laplace transforms and solve the resulting
set of ODEs (Carlslaw and Jaegar 1959). One derives a set of algebraic equations for the
coefficients of the solution to theODEs by matching boundary conditions. However, there
is an obvious difficulty with this approach, namely the inversion of the Laplace transform
to extract the behaviour of the system in the time domain. An alternative approach is to
exploit the well known relationship between diffusion processes and random walks. For
the specific problem of diffusion on a dendritic tree of a neuron, this has been carried out
using both path-integral (Abbottet al 1991) and space-discretization schemes (Bressloff and
Taylor 1993). In both cases, the calculation of the fundamental solution then reduces to the
combinatorial problem of summing over paths of an unbiased random walk on the given
tree. Using various reflection arguments (analogous to the method of images) an explicit
set of rules for performing the path summation can be obtained. The result is a real-time
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expression for the fundamental solution in the form of an infinite series that is useful for
studying finite-time behaviour.

In this paper, we develop further the ‘sum-over-paths’ method for solving the diffusion
equation on a tree. We follow the space-discretization scheme of Bressloff and Taylor (1993)
since it is conceptually simpler than the path-integral approach and, moreover, spatially
discrete processes (e.g. continuous-time random walks (Haus and Kehr 1987)) are of interest
in their own right. In section 2, we construct the continuous and discrete diffusion equations
on a tree and show how the fundamental solution or Green’s function of the latter can be
expressed in terms of a path summation. The explicit set of rules for carrying out this path
summation is presented in section 3 and the series expansion of the real-time fundamental
solution of both the discrete and continuous diffusion processes is given. These series
expansions are particularly useful for determining the small-time behaviour of the system.
However, in the long-time limit it is still necessary to resort to Laplace transforms in order
to sum the series exactly. This is carried out explicitly in section 4. The resulting expression
for the Laplace transform of the fundamental solution provides an alternative form to that
obtained using the conventional matching boundary approach, and may be more convenient,
for example, in the context of configurational averaging.

2. Diffusion on a tree

2.1. Continuous case

Let c(x, t) denote the concentration at timet and positionx ∈ R of a single species of
particle undergoing diffusion in one dimension. The concentrationc(x, t) evolves according
to the diffusion equation

∂c

∂t
= D

∂2c

∂x2
t > 0 − ∞ < x < ∞ (2.1)

whereD is the diffusion constant, which is assumed to be independent ofx and t . Under
the initial conditionc(x, 0) = f (x),−∞ < x < ∞, the solution to equation (2.1) at time
t > 0 is given by

c(x, t) =
∫ ∞

−∞
dx ′G(x, t |x ′, 0)f (x ′) (2.2)

where

G(x, t |x ′, t ′) = χ(x − x ′, t − t ′) ≡ 1√
4πD[t − t ′]

exp

[
− (x − x ′)2

4D[t − t ′]

]
. (2.3)

HereG(x, t |x ′, t ′) is the fundamental solution of the diffusion equation obtained for the
initial dataf (x) = δ(x − x ′) at t = t ′.

In this paper we are interested in solving equation (2.1) on an arbitrary tree0 such as
figure 1. In order to proceed, we need to specify boundary conditions for the concentrationc

at the branching and terminal nodes of the tree. Label the various line segments (edges)
of 0 by i = 1, . . . , |0| where |0| is the total number of line segments. The position
coordinate along theith segment is denoted byx with 0 6 x 6 Li , andLi is the length of
the segment, (for semi-infinite segments, 06 x < ∞). We assume that each segment has
the same diffusion constantD. If ci denotes the concentration on theith segment then

∂ci

∂t
= D

∂2ci

∂x2
t > 0 0< x < Li . (2.4)
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Figure 1. Example of a general tree0. Terminal and branching nodes
are given by full and open circles, respectively. In this particular
example the coordination number at a branching node is eitherzα = 3
or zα = 4.

All nodes of the tree may be classified as either branching or terminal (see figure 1). LetB
denote the set of branching nodes of0. Consider a single branching nodeα ∈ B and label
the set of segments radiating from it byIα. Denote the local coordinate representation ofα

on theith segment byxi(α). Thusxi(α) = 0 orLi . The boundary conditions are continuity
of the concentration at the node,

ci(xi(α), t) = ck(xk(α), t) for all i, k ∈ Iα t > 0 (2.5)

and conservation of current through the node,∑
i∈Iα

Ji(xi(α), t)ηi = 0 Ji(x, t) = −D∂ci
∂x

(2.6)

whereηi = +1(ηi = −1) if xi(α) = 0 (xi(α) = Li.

The boundary conditions at terminal nodes naturally fall into two classes, those where
the concentrationc is specified and those where the current (density) is specified. We refer
to these as boundary conditions of thefirst and secondkind, respectively. Alternatively,
we refer to the boundaries asopen and closed. If a given segment terminates at the point
xi = 0 or Li , then the boundary condition of the first kind requires that

ci(xi, t) = gi(t) (2.7)

while the second kind has

−Ji(xi, t) ≡ D
∂ci

∂x

∣∣∣∣
x=xi

= hi(t) (2.8)

for given functionsgi andhi . The set of terminal nodes (or line segments) with boundary
conditions of the first and second kind are denoted byD andN , respectively.

If we are given initial dataci(x, 0) = fi(x), 0 < x < Li, i = 1, . . . |0| then we would
like to express the solution to equations (2.4)–(2.8) in a similar form to equation (2.2), that is,
in terms of the fundamental solution on a tree. This can be achieved using a generalization
of Green’s theorem (Zauderer 1989). The result is

ci(x, t) =
|0|∑
j=1

∫ Lj

0
dx ′Gij (x, t |x ′, 0)fj (x

′)

−D
∫ t

0
dt ′

∑
j∈D

ηj
∂

∂x ′Gij (x, t |x ′, t ′)
∣∣∣∣
x ′=xj

gj (t
′)

+
∫ t

0
dt ′

∑
j∈N

ηjGij (x, t |xj , t ′)hj (t ′) (2.9)

whereηj = +1 if xj = Lj and ηj = −1 if xj = 0 for terminal nodes andGij (x, t |x ′, 0)
is the fundamental solution of equation (2.4) with homogeneous boundary conditions
(gi(t), hi(t) = 0 for all t) and initial dataGij (x, 0|x ′, 0) = δ(x − x ′)δij . Note that in
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parabolic equations such as the diffusion equation one should distinguish between the
fundamental solution and the Green’s function. The latter, denoted byKij (x, t |x ′, t ′)
satisfies the backwards diffusion equation

−∂Kij
∂t

−D
∂2Kij

∂x2
= δ(x − x ′)δ(t − t ′)δij 0< x ′ < Lj 0< x < Li . (2.10)

However, there is a simple relationship betweenG and K given by Kji(x ′, t ′|x, t) =
θ(t − t ′)Gij (x, t |x ′, t ′), whereθ is the Heaviside function.

The initial boundary value problem for the diffusion equation on a tree thus reduces
to the problem of finding the associated Green’s function or fundamental solution. Rather
than trying to calculate the fundamental solution directly, we shall consider a discrete
version of the diffusion equation and determine its fundamental solution using a ‘sum-over-
paths’ approach. The fundamental solution of the original continuous problem will then be
generated in the continuum limit (section 3).

2.2. Discrete case

We discretize the tree0 by taking each line segmenti to be subdivided into a set ofMi

intervals of length1x with Mi1x = Li . The continuum limit is given by1x → 0 such
that Li is fixed for eachi. This discretization leads to a new tree0̂ of vertices labelled
I together with a set of links (IJ ) of length1x (see figure 2). The set of verticesI
includes the branching nodes and terminal nodes of the original tree0 together with the set
of internal nodes. In terms of the (discrete) local coordinates of the original line segments,
we can setI = (ni) for terminal and internal nodes withn denoting thenth discrete point
on the ith segment. On the other hand, for branching nodes,I = α whereα ≡ (ni(α)i)

for all i ∈ Iα. Note that in the discrete case all physics occurs on the vertices of the tree,
whereas in the continuous case it occurs on the links.

From the geometry of simplicial lattices (see the appendix) we can write down a discrete
version of the diffusion equation in the form

dcI
dt

= 2D

zI1x2

∑
J (I)

[cJ (t)− cI (t)] (2.11)

where the summation is over all neighbours of lattice pointI and zI is the coordination
number ofI . It is a simple matter to check that equation (2.11) reduces to equations (2.4)–
(2.8) in the continuum limit1x → 0. First, if I is an internal node, that is,I = (ni), 0<
n < Mi , thenzI = 2 and

dcni
dt

= D

1x2
[cn+1,i (t)− 2cni(t)+ cn−1,i (t)] . (2.12)

The right-hand side contains the standard finite-difference expression for the Laplacian, and
hence we obtain equation (2.4) in the continuum limit. Second, ifI is a closed terminal

Figure 2. Tree0̂ obtained by discretizing each line segment of the tree
0 (figure 1) into intervals of length1x.
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node withI = (0i) say then

dc0i

dt
= 2D

1x2
[c1i (t)− c0i (t)] (2.13)

which yields equation (2.8) in the continuum limit (forhi = 0). Finally, consider a branching
nodeI = α such thatcα ≡ c0i for all i. Then

dcα
dt

= 2D

zα1x2

∑
i∈Iα

[c1i (t)− c0i (t)] (2.14)

which reduces to equation (2.6) in the continuum limit. Equations (2.5) and (2.7) are trivially
satisfied.

It is useful to rewrite equation (2.11) in the matrix form

dc
dt

= ρ[Qc − c] ρ = 2D

1x2
(2.15)

where

Q = D−1A D = diag (zI ) (2.16)

andA is the adjacency matrix of the treê0. That is,AIJ = 1 if (IJ ) is a link andAIJ = 0
otherwise. The relationship between diffusion and random walks is now clear sinceQ
generates an unbiased random walk on the lattice0̂. That is, [Qp]IJ is the probability that
a random walker starting atI reachesJ in p steps of length1x.

It should be noted that equation (2.15) is similar in form to the master equation of
a continuous-time random walk with Poissonian waiting-time distributions (Montroll and
Weiss 1965, Haus and Kehr 1987). More specifically, ifcI (t) is now interpreted as the
probability of a single random walker being at siteI at time t then

dc
dt

= κ[QTc − c] (2.17)

whereκ is a transition rate and T indicates transpose. Since
∑

J∈0̂ QIJ = 1 for all I ∈ 0̂, it
follows from equation (2.17) that the total probability is conserved, that is,d

dt (
∑

I∈0̂ cI ) = 0.
On the other hand, the total particle numbercI in the discretized diffusion equation (2.15)
is not conserved since

∑
I∈0̂ QIJ 6= 1 for J at branching or closed terminal nodes; particle

number conservation is recovered, however, in the continuum limit.
The solution of equation (2.15) is

cI (t) =
∑
J

GIJ (t)cJ (0) (2.18)

where

GIJ (t) = e−ρt[eρtQ]
IJ

(2.19)

is the fundamental solution of the discretized system. Expanding equation (2.19) gives

GIJ (t) = e−ρt ∑
p>0

1

p!
(ρt)p[Qp]IJ . (2.20)

Thus the problem of calculating the fundamental solution of the discrete diffusion equation
reduces to the combinatorial problem of summing over paths of a random walk on0̂.
This ‘sum-over-paths’ approach is similar in spirit to the treatment of continuous-time
random walks by Montroll and Weiss (1965). Having calculatedGIJ (t) we can take the
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continuum limit to determine the fundamental solution of the continuous diffusion equation.
In particular, if I = (ni), J = (mj) andx = n1x, x ′ = m1x then

G(x, t |x ′, 0) = lim
1x→0

1

1x
GIJ (t) . (2.21)

We shall find that taking the continuum limit is very simple within the ‘sum-over-paths’
framework (see section 3).

3. Fundamental solution on a tree

Following Bressloff and Taylor (1993), the ‘sum-over-paths’ approach will now be used to
determine a set of rules for constructing the fundamental solution on an arbitrary tree. In
order to motivate the rules, it is useful to consider some simple cases first.

3.1. One-dimensional interval−∞ < x < ∞
We begin by considering the case of one-dimensional diffusion over the unbounded domain
−∞ < x < ∞ (see also Haus and Kehr 1987). Dividing the real line into segments of equal
length1x and writing x = n1x for integern, equation (2.1) reduces to equation (2.12)
(without the segment indexi). In this simple case

[Qp]nm = (
1
2

)p
N [n,m, p] (3.1)

whereN [n,m, p] is the number of possible paths ofp steps fromn to m. The latter can
be determined using straightforward combinatorics to give (Grimmett and Stirzaker 1988)

N [n,m, p] =
(

p

(p + |n−m|)/2
)
. (3.2)

Substitution of equations (3.1) and (3.2) into (2.20) yields

Gnm(t) = e−ρt I|n−m|(ρt) (3.3)

where we have performed the summation overp explicitly to obtain a modified Bessel
function of integer order (Abramowitz and Stegun 1970).

Having obtained the fundamental solution to the discrete model, we can take the
continuum limit to obtain equation (2.3). First, use an integral representation forIn to
rewrite equation (3.3) as

Gnm(t) =
∫ π

−π

dk

2π
exp(ik(n−m)− tρ(1 − cosk)) . (3.4)

Settingx = n1x, x ′ = m1x and performing a change of variablesk → k/1x gives

Gnm(t) = 1x

∫ π/1x

−π/1x

dk

2π
exp

(
ik(x − x ′)− 2tD

1x2
(1 − cosk1x)

)
.

Finally, taking the continuum limit1x → 0 according to equation (2.21) yields the desired
result. That is,

lim
1x→0

1

1x
e−ρt I|n−m|(ρt) = χ(x − x ′, t) (3.5)

whereχ is defined in equation (2.3).
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3.2. Semi-infinite interval0 6 x < ∞
(i) Open boundary atx = 0. Consider the diffusion equation on the interval 06 x < ∞
with a homogeneous boundary condition of the first kindc(0, t) = 0. Discretize the spatial
coordinate by settingx = n1x with n = 0, 1, . . . . Then equation (2.12) holds forn > 1
(without the indexi) such thatc0(t) ≡ 0. In the present example the matrixQ generates
a random walk that is restricted to lie in the positive regionn > 0, i.e. it involves paths
that do not touch the origin. Using a reflection argument (Chandrasekhar 1943, Grimmett
and Stirzaker 1988) it can be shown that on an infinite domain there is a one to one
correspondence between paths fromn to m that touch the origin and paths fromn to −m.
Hence,

[Qp]nm = (
1
2

)p
[N [n,m, p] −N [n,−m,p]] . (3.6)

Substitution into equation (2.20) and the use of equation (3.2) shows that

Gnm(t) = e−ρt [I|n−m|(ρt)− I|m+n|(ρt)] . (3.7)

Finally, taking the continuum limit and using equation (3.5),

G(x, t |x ′, 0) = [χ(x − x ′, t)− χ(x − x ′, t)] . (3.8)

(ii) Closed boundary atx = 0. The calculation of the fundamental solution for the
boundary condition of the second kind proceeds along similar lines. One now has the
condition that no current flows beyond the endx = 0. Discretizing space in the usual
manner leads to equation (2.12) forn > 1 and equation (2.13) forn = 0. The matrixQ
generates a random walk restricted to lie in the regionn > 0; any path that hits the origin
is reflected back in the positivex-direction and an additional factor of 2 is picked up (since
the coordination number of the terminal node is unity). Thus (form 6= 0)

[Qp]nm = (
1
2

)p[
N0

+[n,m, p] + 2N1
+[n,m, p] + 4N2

+[n,m, p] + · · ·] (3.9)

whereNq
+[n,m, p] is the number of paths of lengthp from n to m on the semi-infinite

interval that hit the origin exactlyq times. From reflection argumentsN0
+[n,m, p] =

N [n,m, p] − N [n,−m,p] and Nq
+[n,m, p] = 2−q+1Nq [n,−m,p] for q > 1 where

N [n,m, p] satisfies equation (3.2) andNq [n,−m,p] is the number of paths fromn to
−m on the infinite interval that touch the origin exactlyq times. It follows that

[Qp]nm = (
1
2

)p
[N [n,m, p] +N [n,−m,p]] (3.10)

where we have used the identity
∑∞

q=1N
q [n,−m,p] = N [n,−m,p]. The above reflection

argument is slightly modified if the pointm actually lies on the boundary; the result is that
the right-hand side of equation (3.10) should be multiplied by a factor of1

2 if m = 0 (this
point was not explicitly addressed in the seminal review of Chandrasekhar (1943), and is
easy to overlook). It follows that

Gnm(t) = e−ρt [I|n−m|(ρt)+ I|m+n|(ρt)]
(

1
2

)δm,0 (3.11)

and

G(x, t |x ′, 0) = [χ(x − x ′, t)+ χ(x + x ′, t)] . (3.12)

Note the subtle point that the term involving the factor of1
2 in equation (3.11) disappears

in the continuum limit1x → 0.
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3.3. Single branching node

Consider a tree consisting ofzα semi-infinite segments labelledi = 1, . . . , zα connected to
a single branching nodeα. Let ci(x, t),0 6 x < ∞, denote the concentration on theith
segment and take the coordinate value of the branching node to be zero for alli. Discretize
each segment by settingx = n1x with n > 0. The discretized diffusion equation then
takes the form of equation (2.12) forn > 1 and equation (2.14) forn = 0. The matrix
Q generates a random walk on the tree such that an additional factor of 2z−1

α is picked up
each time a path passes from the branching node to any segment radiating from it. The
sum over all such paths can be handled using reflection arguments along the lines of Abbott
et al (1991). Suppose that the initial and final points are on the same segment, that is,
i = j . Then there is azα-independent contribution from paths that do not touch the origin
of the formN [n,m, p] −N [n,−m,p]. The onlyzα-dependent weighting factor that occurs
for paths that do touch the branching node arises from the final time the path leaves the
branching node before terminating at (mj ). This follows from the relation

∑
α z

−1
α = 1

and is true whether or noti = j . In order to understand this more clearly, consider a
path that makes an intermediate excursion from the branching node down one of thezα
segments and then returns to the node. The sum over all paths will receive contributions
from paths with similar excursions along all of the segments of the branching node. The
probability of entering each segment isz−1

α so that when we perform the path summation
over all segments we obtain unity. Thus the probability factors associated with excursions
that start and end at the branching node are irrelevant in the total sum-over-paths; the only
factor that does not sum in this way is the one associated with the last time that the path
leaves the branching node. Thus, following the treatment of the closed semi-infinite case,
we have (form 6= 0)

[Qp]ni,mj = (
1
2

)p
[(N [n,m, p] −N [n,−m,p])δi,j

+ 2z−1
α (N

1
+[n,m, p] + 2N2

+[n,m, p] + · · ·)]
= (

1
2

)p
[(N [n,m, p] −N [n,−m,p])δi,j + 2z−1

α N [n,−m,p]] (3.13)

where Nq
+[n,m, p] is defined in section 3.2 (ifm = 0 then the right-hand side of

equation (3.13) is multiplied by an additional factor ofzα/2). Again it follows that

Gni,mj (t) = e−ρt [I|n−m|(ρt)δi,j + (2z−1
α − δi,j )I|m+n|(ρt)]

(zα
2

)δm,0
(3.14)

and

Gij (x, t |x ′, 0) = [χ(x − x ′, t)δi,j + (2z−1
α − δi,j )χ(x + x ′, t)] . (3.15)

The validity of the above results (3.13)–(3.15) may be verified by direct enumeration.

3.4. Arbitrary tree

Now consider an arbitrary tree0 such as figure 1. Discretizing the tree as described in
section 2.2 yields the discrete diffusion equation (2.11) or (2.15) defined on the tree0̂

(figure 2). The matrixQ generates an unbiased random walk on0̂ with the following
properties:

(i) An additional factor of 2 occurs whenever a path is reflected from a terminal node
with a closed boundary condition.

(ii) Paths cannot touch terminals with open boundary conditions.
(iii) An additional factor of 2z−1

α occurs whenever a path passes from the branching
nodeα ∈ B to any segmentk ∈ Iα joining this node.
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In order to describe the rules for constructing the fundamental solution on the tree0̂

as given by equation (2.20), it is useful to introduce the notion of a trip (Abbottet al
1991). A trip from the point (ni) to (mj ) on the tree is a path that starts from (ni) in any
direction, but subsequent changes in direction can only occur by reflections at branching
nodes and terminals; a trip can pass through the points (ni) and (mj ) an arbitrary number of
times before finally stopping at (mj ) and can enter different segments by crossing branching
nodes. Each tripµ can be specified by the ordered sequence of segments traversed by the
trip. Thusµ = {i, k, k′, . . . , k′′, j}. The total length of a trip will benµ +mµ +Mµ where

nµ =
{
n if trip starts fromn in the negativex-direction

Mi − n if trip starts fromn in the positivex-direction

mµ =
{
m if the final part of the trip reachesm in the positivex-direction

Mj −m if the final part of the trip reachesm in the negativex-direction

Mµ = Mk +Mk′ + · · · +Mk′′ .

One exception to the above rule concerns the direct path between two pointsn,m on the
same line segment for which the path length is simply|n−m|. Some examples illustrating
the definition of a trip are given in figure 3.

Using the above notion of a trip, we can use reflection arguments to reduce the
summation over paths on the tree0̂ to a summation over all possible trips of a corresponding
one-dimensional random walk. The result is that the fundamental solution (2.20) may be

Figure 3. Some examples of trips between two points on a tree with two branching nodesα,
α′ having coordination numberszα = 3, zα′ = 4 and five terminal nodes. Theith line segment
has lengthLi , i = 1, . . . ,6. Impose open boundary conditions for segments 1, 2 and closed
boundary conditions for segments 4, 5, 6. For each segment the positivex-direction is from left
to right. The total length of a trip is denoted byLT . (a) The direct trip between pointx on
segment 1 and pointx′ on segment 4. HereLT = L1−x+L3+x′ and the associated coefficient
in equations (3.16) and (3.17) isbµ = 2z−1

α 2z−1
α′ . (b) A trip that undergoes a single reflection

at the terminal node of segment 1 and segment 4. HereLT = x + L1 + L3 + L4 + L4 − x′
and bµ = (−1)(2z−1

α )(2z−1
α′ )(+1). (c) A trip that reflects twice at left-hand branching node,

once at the right-hand branching node and once at the terminal node of segment 2. Here
LT = (L1 − x)+ 2L2 + 3L3 + x′ andbµ = (2z−1

α )(−1)(2z−1
α )(2z−1

α′ − 1)(2z−1
α − 1)(2z−1

α′ ).
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expressed in terms of the infinite series

Gni,mj (t) = e−ρt
(ij)∑
µ

bµI|nµ+mµ+Mµ|(ρt) (3.16)

and the sum is restricted to trips starting on segmenti and terminating on segmentj . The
factors contributing to the coefficientsbµ are determined by the following rules:

(i) A factor of +1 for every reflection at a closed terminal and a factor−1 for every
reflection at an open terminal.

(ii) A factor of 2z−1
α whenever a trip crosses branching nodeα from segmenti to

segmentk, i 6= k, i, k ∈ Iα.
(iii) A factor of (2z−1

α − 1) whenever a trip is reflected at nodeα back into the same
segmentk ∈ Iα.

(iv) A factor of 2z−1
α if a trip starts at a branching nodeα and a factor 2 if it starts at a

closed terminal node.
It is now a very simple matter to obtain the fundamental solution of the continuous

diffusion equation on the tree0 using equation (3.5). First, setx = n1x, x ′ = m1x, xµ =
nµ1x, x

′
µ = mµ1x andLµ = Mµ1x. Then the continuum limit of equation (3.16) gives

(see also Abbottet al 1991)

Gij (x, t |x ′, 0) =
(ij)∑
µ

bµχ(xµ + Lµ + x ′
µ, t) (3.17)

where the coefficientsbµ are now determined by rules (i)–(iv) together with an additional
rule: (v) A factor 2z−1

α if a trip ends at a branching nodeα and a factor 2 if it ends at a
terminal node.

One can view the summation over trips in equation (3.17), or (3.16), as a generalization
of the method of images to the case of an arbitrary tree. For non-trivial topologies there
is an infinite number of possible trips and hence an infinite number of terms on the right-
hand side of (3.17). However, for any fixed timet , trips with lengths much longer than√
Dt will only give small contributions so that the sum can be truncated. Hence, using an

efficient algorithm for generating trips should provide a new numerical method for directly
determining the real-time fundamental solutionG.

So far we have restricted our analysis to the case of trees, that is, graphs without loops.
However, the results can easily be extended to take into account loops. It is natural to
partition the set of trips according to the set of winding numbers of a trip, which specify
the number of complete rotations around each loop in an anticlockwise direction minus the
corresponding number in the opposite direction. The rules for determining the coefficients
bµ and trip lengthsxµ + Lµ + x1

µ are unchanged.

4. Summation over trips

In principle, the method presented in section 3 is valid for all times. In practice, for very long
times the number of terms in equation (3.16) or (3.17) becomes large and a solution based
around Laplace transforms may be more appropriate. In this section, we shall show how one
can explicitly perform the summation over trips in Laplace space to yield a closed expression
for the Laplace transform̃G of the fundamental solution. This provides a connection with
the conventional Laplace approach of matching boundary conditions.
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Laplace transforming equation (3.16) gives

G̃ni,mj (s) = 2

ρ[λ+(s)− λ−(s)]

(ij)∑
µ

bµ[λ−(s)]|nµ+mµ+Mµ| (4.1)

where

λ±(s) = 1 + s

ρ
±

√(
1 + s

ρ

)2

− 1 . (4.2)

Similarly, Laplace transforming (3.17) yields

G̃i,j (x, x
′, s) = 1

2
√
Ds

(ij)∑
µ

bµ exp

(
−

√
s

D
(|xµ + x ′

µ + Lµ|)
)
. (4.3)

Thus in Laplace space the summation over trips involves power series, which can be
evaluated explicitly. For concreteness, we shall consider the continuous case, equation (4.3);
the discrete case can be handled in an identical fashion. We shall develop the analysis
through a number of examples.

(i) Finite interval0 6 x 6 L. Suppose that both ends of the finite interval have boundary
conditions of the first kind so thatc0(t) = cL(t) = 0. Without loss of generality, assume that
x > x ′. There are four classes of trips depending on the directions of the initial departure
from x and the final arrival atx ′. We note these directions byu andv, respectively with
u, v = ±. (a) If u = +, v = − then the trip length is 2kL − (x + x ′) with k > 1. (b) If
u = +, v = + then the trip length is 2kL+ x ′ − x with k > 1. (c) If u = −, v = − then
the trip length is 2kL + x − x ′ with k > 0. (d) If u = −, v = + then the trip length is
2kL+ x + x ′ with k > 0. Using the fact that a factor of−1 is picked up each time a trip
reflects at an open boundary we find that equation (3.17) becomes

G(x, t |x ′, 0) =
∞∑

k=−∞
[χ(2Lk + x − x ′, t)− χ(2Lk + x + x ′, t)] (4.4)

which is the well known result obtained using the method of images. On Laplace
transforming equation (4.4) we can perform the summation overk explicitly to obtain
the result

G̃(x, x ′; s) = χ̃(x − x ′, s)+ χ̃(x − 2L− x ′, s)− χ̃(x + x ′, s)− χ̃(x − 2L+ x ′, s)
[1 − exp(−2L

√
s/D)]

(4.5)

whereχ̃(x, s) is the Laplace transform ofχ(x, t) defined in equation (2.3),

χ̃(x, s) = exp(−√
s/D|x|)

2
√
Ds

.

(ii)Single branching node with finite segments.Next consider the case of a single branching
node α with zα finite segments radiating from it. Consider for concreteness trips that
begin and end at the branching node. An arbitrary trip consists of two distinct kinds
of contribution: (a) multiple reflections within a segment and (b) transitions across the
branching node between segments. A trip undergoingr transitions may be specified by

the sequence of integersni1
i2 6=i1→ ni2

i3 6=i2→ ni3 · · · ir 6=ir−1→ nir , which representsni1 return journeys
to the branching node via internal reflections within segmenti1 followed by a transition to
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segmenti2, etc. Hence, the Laplace transform (4.3) takes the form (dropping the redundant
segment indicesij )

G̃(0, 0; s) = 1

2
√
sD

[
1 +

∞∑
r=1

∑
{i1,···,ir }

∑
{n1,···,nr }

exp(−2ni1Li1
√
s/D)(±p̄α)ni1

(
pα

p̄α

)
× exp(−2ni2Li2

√
s/D)(±p̄α)ni2

(
pα

p̄α

)
· · ·

× exp(−2nirLir
√
s/D)(±p̄α)nir

(
pα

p̄α

)]
. (4.6)

In writing down equation (4.6) we have used the rules presented in section 3.4; each
reflection picks up a factor̄pα = 2z−1

α − 1 at the branching node and a factor±1 at a
terminal node (depending on whether it is closed or open), and each transition across the
branching node produces a factorpα = 2z−1

α . Since the integersni1, · · · , nir are independent,
we can sum over all multiple reflections to obtain the result

G̃(0, 0; s) = pα

z
√
sD

[
1 +

(
pα

p̄α

) ∑
i

f (Li, s)+
(
pα

p̄α

)2 ∑
i

∑
j 6=i

f (Li, s)f (Lj , s)

+
(
pα

p̄α

)3 ∑
i

∑
j 6=i

∑
k 6=j

f (Li, s)f (Lj , s)f (Lk, s)+ · · ·
]

(4.7)

where

f (L, s) = ± p̄α exp(−2L
√
s/D)

1 ∓ p̄α exp(−2L
√
s/D)

(4.8)

and the choice of signs depends on the boundary condition at the terminal node.
It is important to note that by performing the partial summation over internal reflections

to derive equation (4.7) from (4.6) we have spoiled the convergence properties of the latter.
To see this assume for simplicity that all segments have the same lengthL. It turns out that
(4.7) is then only convergent if

2
zα − 1

zα

∣∣∣∣ exp(−2L
√
s/D)

1 ∓ p̄α exp(−2L
√
s/D)

∣∣∣∣ < 1

which implies that 2L
√
s/D > ln(3−2z−1

α ). Nevertheless, the series on the right-hand side
of equation (4.7) can be summed to give the following closed expression forG̃:

G̃(0, 0; s) = pα

z
√
sD

{1 + Fα(s)[1 − Φα(s)]
−1vα} (4.9)

with

Fα(s) =
(
pα

p̄α

)
(f (L1, s), . . . , f (Lzα, s)) vT

α = (1, 1, . . . ,1) (4.10)

and

Φα(s) =
(
pα

p̄α

) ( 0 f (L2, s) f (L3, s)

f (L1, s) 0 f (L3, s)

f (L1, s) f (L2, s) 0

)
. (4.11)

By analytic continuation, equation (4.9) gives the Laplace transform of the fundamental
solution throughout the complex domain.
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If trips started and ended on the terminal node of segment 1, say, then a similar
calculation yields

G̃11(L1, L1; s) = 1

χ
√
sD

{
1+2f (L1, s)+2pαe−2L1

√
s/D(1+f (L1, s))

2u1
α[1−Φα(s)]

−1ū1
α

}
(4.12)

with

u−1
α = (1, 0, . . . ,0) ū1

α = (0, 1, . . . ,1)T . (4.13)

(iii ) Two branching nodes. For our third example consider the case of two branching nodes
α, α′ as given by figure 3 withIα = {1, 2, 3}, Iα′ = {3, 4, 5, 6}. The analysis follows along
similar lines to the previous case. That is, we first sum over multiple reflections and then
over transitions between segments. The result for trips starting and ending at branching
nodeα is that the Laplace transform (4.3) reduces to the closed expression

G̃(α, α; s) = pα

z
√
sD

{
1 + (Fα(s),Oα′)[1 − Φ(s)]−1(vα,Oα′)T

}
(4.14)

where Fα, vα are defined by equation (4.10) and [Oα′ ]i = 0 for all i ∈ Iα′ . The matrix
Φ(s) is anN ×N matrix whereN = zα + zα′ and has the structure

Φ(s) =
(

Φα(s) Xαα′(s)

Xα′α(s) Φα′(s)

)
(4.15)

where Φα(s), Φα′(s) are defined according to equation (4.11) withf (Li, s) satisfying
equation (4.8) fori 6= 3 and

f (L3, s) = p̄αp̄α′ exp(−2L
√
s/D)

1 − p̄αp̄α′ exp(−2L
√
s/D)

. (4.16)

The matrixXαα′ and its transportXα′α are defined by

[Xαα′(s)]ij =
{
pα′ exp(−L3

√
s/D) if i = 3, j ∈ Iα′ , j 6= i

0 otherwise
(4.17)

and

[Xα′α(s)]ij =
{
pα exp(−L3

√
s/D) if i = 3, j ∈ Iα, j 6= i

0 otherwise.
(4.18)

The corresponding expression forG(α, α′; s) is obtained by replacing the vector (vα,Oα′ )
with (Oα, vα′ ), etc.

One can extend the above results to arbitrary trees and graphs and for general initial and
final points. The basic structure is similar to equation (4.14) and involves a matrixΦ(s) with
diagonal blocksΦα(s) for all branching nodesα ∈ B, off-diagonal blocksXαβ(s),Xβα(s)
for linked branching nodesα, β and zeros elsewhere.

Finally, an interesting notion that emerges from the examples considered above is that of
performing partial summations over trips such as multiple internal reflections on a link (see,
for example, equation (4.7)). A similar idea was used by Goldhirsch and Geffen (1986,
1987) in their diagrammatic method for analysing the characteristic function of discrete-
time random walks on networks. It is also reminiscent of partial summations over ladder
diagrams, for example, in quantum field theory. The use of partial summations may be
useful in carrying out configurational averaging where the topology of the tree is fixed but
the lengths of each segment are generated according to some probability distribution.
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5. Discussion

In this paper we have presented an alternative approach to the conventional Laplace
transform and matching boundary conditions method of analysing diffusion processes on
complex tree structures. By discretizing space and exploiting the connection between
diffusion and random walks, the ‘sum-over-paths’ approach is basically combinatoric in
nature and works from the outset with time as the primary variable of interest rather than
the Laplace variables. For certain classes of problem thisobviates the need for inverting
any Laplace transform, a point we would like to emphasize. Thus for the typical problems
listed in the introduction our methodology should form the basis for immediate practical
applications. A great virtue of the ‘sum-over-paths’ approach is that, rather like Feynman
diagram methods in quantum field theory, the rules presented allow for thesystematic
construction of the solution given an arbitrary tree.

We have also shown how in the present approach one can formally sum the series
expansion of the fundamental solution in Laplace space for both discrete-space and
continuous-space systems. This provides a connection with the conventional Laplace
technique and an underlying unification; further, the representation thus provided may be
useful in the context of configurational averaging. The ideas presented may also be helpful
in performing partial diagram summations (e.g. multiple internal reflections on a link, which
are akin to ladder diagrams in field theory).

This paper has been concerned with developing an underlying mathematical structure for
analysing diffusion processes on tree structures, rather than with solving a specific physical
problem in great detail. For the latter one is likely to have to develop additional schemes
for configurational averaging or exploiting self-similarity (Cayley tree-like topologies for
instance, or Bethe lattices). Again, the ‘sum-over-paths’ solution is a convenient starting
point for such calculations.

We would also like to emphasize the possibility of using the ‘sum-over-paths’ method as
a general strategy for solving other linearPDEs on structures with complex spatial topologies.
An obvious and important extension would be to include the effects of drift, which can occur
in most of the examples listed in the introduction. Suppose (for simplicity) that a constant
drift is introduced onto each segment of the tree0 introduced in section 2.1. We assume
that each segment has the same drift speedv but allow the direction of the drift with respect
to the localx-coordinate of a segment to be arbitrary (specified byεi = ±1). Equation (2.4)
becomes

∂ci

∂t
= D

∂2ci

∂x2
− vεi

∂ci

∂x
t > 0 0< x < Li . (5.1)

The boundary conditions (2.5)–(2.8) hold with the modified current

Ji(x, t) = −D∂ci
∂x

+ εivci . (5.2)

Following the analysis of the zero-drift case, one can evaluate the fundamental solution of
equation (5.1) using a space-discretization scheme. A discrete version of the drift–diffusion
equation defined on the treê0 is of the form (see the appendix)

dcI
dt

= 2z−1
I

∑
J (I)

(
D

1x2
[cJ (t)− cI (t)] − εIJ

v

21x
[cI (t)+ cJ (t)]

)
(5.3)

whereεIJ = +1 if the link (IJ ) is in the direction of drift andεIJ = −1 if (IJ ) is in
the opposite direction to the drift. Equation (5.3) yields equation (5.1) and the correct
boundary conditions in the continuum limit. We can rewrite equation (5.3) in the form of
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the matrix equation (2.15) whereQ now generates abiased random walk on the treê0.
The calculation of the fundamental solution based on the path-summation approach is now
considerably more involved and requires the solution of an integral equation. The results
of this analysis will be presented elsewhere.

Besides the drift–diffusion equation, other obvious candidates for solution on tree
structures are the wave equation and the Schrödinger equation (quantum mechanics on
graphs, a problem of considerable theoretical interest (see e.g. Gratuset al 1994 and
references therein)). For the latter, the natural variable of interest is energy, but this formally
plays an identical role to the Laplace variables, which we have shown how to analyse.
Moreover, the discrete version of the Schrödinger equation is directly related to tight-binding
models, which are also of considerable interest.

Appendix

The ‘sum-over-paths’ method for solving the diffusion equation on a tree involves a
discretization of each line segment leading to a set of coupledODEs. In this appendix
we show how the discrete diffusion equation has a natural interpretation in terms of the
geometry of simplicial lattices. Our discussion follows closely chapter 11 of Itzykson and
Drouffe (1991). We shall restrict ourselves to the one-dimensional case, although all results
can be easily extended to higher dimensions (planar lattices, etc).

Consider a simplicial lattice0 consisting of points (0-simplexes) labelledI together with
a set of links (1-simplexes) (IJ ) joining neighbouring points on the lattice at a distance
lIJ = lJ I . (Note that in the text we label the lattice by settingI = (ni) with n numbering
thenth discrete point on theith segment of the tree and identifying the endpoints of all line
segments radiating from a given branching node. The length of each link is taken to be
lIJ = 1x.) The dual lattice0̃ consists of 1-cells and 0-cells. TheI th 1-cell consists of all
points on the lattice0 closer to pointI than any other point. The total length of this cell is
σI = ∑

J (I) lIJ /2 where the summation overJ is restricted to nearest neighbours ofI . The
0-cell dual to the link (IJ ) is the point on the lattice0 located midway on the link. Define
F0 as the set of 0-forms, that is, functions defined at lattice sites,I → φI . Similarly, F1

is the set of antisymmetric 1-forms defined on links,φIJ = −φJI . On the dual lattice we
denote the set of functionsψI on 1-cells byF̃1 and the set of antisymmetric tensorsψIJ
on 0-cells byF̃0. There is a natural duality betweenFp and F̃1−p (p = 0, 1) given by

Fp ↔ F̃1−p φ ↔ ψ σIφI = ψI lIJ φIJ = ψIJ . (A.1)

We denote the dual ofφ andψ by φ̃ andψ̃ . There exists a natural scalar product between
the dual spacesFp and F̃1−p given by

〈φ|ψ〉 =
∑
I

φIψI 〈φ|ψ〉 = 1
2

∑
I,J

φIJψIJ . (A.2)

Introduce the operator d (the analogue of exterior derivative) as a mapping from
F0 → F1 such that

(dφ)IJ = φI − φJ

lIJ
. (A.3)

The dual operator̃d : F̃1 → F̃0 is defined according to the relation〈 dφ|ψ〉 = 〈φ| d̃ψ〉.
Thus

(d̃ψ)I =
∑
J (I)

ψIJ

lIJ
. (A.4)
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We can use the definitions of duality and the operatord̃ to construct the discrete analogue
of the divergence operator, namely, d∗ : F1 → F0. This is obtained by pulling back the
operatord̃ using the duality map (A.1). More specifically, given a 1-formφIJ we have

d∗φ = ˜̃dφ̃, that is,

(d∗φ)I = 1

σI

∑
J (I)

φIJ . (A.5)

The divergence operator (A.5) can be used to formulate a discrete version of the drift–
diffusion equation on a tree. Let the 0-formcI (t) represent a scalar quantity at a pointI
on the lattice at timet . Define the associated current to be the 1-formφ where

φIJ = −D( dc)IJ + vεIJ
cI + cJ

2
(A.6)

whereεIJ = +1 if the link (IJ ) is in the direction of drift andεIJ = −1 if (IJ ) is in the
opposite direction to the drift. Then

dc

dt
= d∗φ . (A.7)

Consider a lattice point with coordination numberzI . Setting lIJ = 1x for all links we
haveσI = zI /2 so that

dcI
dt

= 2z−1
I

∑
J (I)

(
D

1x2
[cJ (t)− cI (t)] − εIJ

v

21x
[cI (t)+ cJ (t)]

)
(A.8)

which gives equations (2.11) and (5.3) used in the text.
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